
A smooth combination of linear and Herbrand
equalities for polynomial time must-alias analysis

Helmut Seidl1, Vesal Vojdani1?, and Varmo Vene2?

1 Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{seidl,vojdanig}@in.tum.de
2 Deptartment of Computer Science, University of Tartu,

J. Liivi 2, EE-50409 Tartu, Estonia
varmo@cs.ut.ee

Abstract. We present a new domain for analyzing must-equalities be-
tween address expressions. The domain is a smooth combination of Her-
brand and affine equalities which enables us to describe field accesses
and array indexing. While the full combination of uninterpreted func-
tions with affine arithmetics results in intractable assertion checking al-
gorithms, our restricted domain allows us to construct an analysis of
address must-equalities that runs in polynomial time. We indicate how
this analysis can be applied to infer access patterns in programs manip-
ulating arrays and structs.

1 Introduction

Consistent correlations between memory locations used by a program lies at the
heart of many safety properties. In order to verify absence of data races in multi-
threaded programs, accesses to memory locations need to be correlated with
locks that guard them. In a language with pointer variables, correlating address
expressions requires knowing when two expressions must alias, i.e., evaluate to
the same memory location. In general, techniques for verifying the correct use of
interface methods (e.g., [1]) can be refined with must-alias information to check
that calls in a syntactically correct sequence consistently refer to the right data
elements: a sequence such as open(e1); ...; close(e2); e.g., should access the same
file handle when referring to the address expressions e1 and e2.

More recently, program-specific correlations have been studied: the length of
a list is, perhaps, maintained in a separate variable which is thus semantically
correlated. Lu et al. [11] apply statistical techniques to detect plausible multi-
variable correlations of this kind. Their methods, although successful in detecting
real bugs, are flow-insensitive and essentially syntactic; hence not ideal for formal
verification. As the precise control flow as well as equalities between variables in
the program are ignored, syntactically similar expressions may not represent the
same semantic correlation, while syntactically different expressions could very
? Partially supported by the Estonian Science Foundation under grant no. 6713.

well be correlated. In order to enable sound inference of semantic correlations
between addresses, we propose a novel analysis of must-equalities.

Our analysis is able to interprocedurally relate address expressions which
use array indexing and field selection in structs. An access to a nested struct
consists in the base address of the data element followed by sequences of selectors,
such as A.person.name. Two such expressions are definitely equivalent if they
are textually identical. This corresponds to the Herbrand interpretation of the
binary operator “.” and the selector labels. In order to deal with arrays as
well, we enhance this base domain by affine expressions for indexed accesses.
Two index expressions are equivalent iff they are equivalent w.r.t. the arithmetic
interpretation. We show that the resulting combination of theories allows to infer
all valid address equalities in polynomial time.

This is in stark contrast to previous work on assertion checking over the do-
mains of uninterpreted functions and linear arithmetic. Detecting affine equal-
ities in programs was pioneered by Karr [9]. This algorithm was extended to
the inter-procedural case by Müller-Olm and Seidl [13]. A long line of research
has provided methods for intra-procedurally detecting Herbrand equalities pre-
cisely [3, 10, 12, 22] — while the inter-procedural case still remains unsolved. A
precise analysis algorithm is known for functions without side effects [16] and
for arbitrary procedures if only unary operator symbols are considered [6].

When it comes to combining affine and Herbrand equalities, the basic ap-
proach is inspired by methods of combining decision procedures [18]. However,
Gulwani and Tiwari [4] have shown that assertion checking over the full com-
bined domain is coNP-hard. Hence, they subsequently present a highly expres-
sive domain that allows sound analysis of pointer arithmetic and recursive data-
structures in the style of Deutsch [2], but their algorithm is no longer complete
w.r.t. their chosen abstraction [5]. Our domain construction, based on a suffi-
ciently restricted sub-class of Herbrand terms carefully enhanced with fragments
of linear arithmetic, enables sound and complete analysis in polynomial time.

2 The Programming Model

One key abstraction on which our method relies is that we only track the values
of int variables and pointers. Thus, we ignore the values stored in arrays or
structs. To simplify our setting, we make the additional assumption that the
tracked variables themselves are never accessed indirectly through pointers; a
common coding practice when developing safety-critical code [8]. Programs to
be analyzed are modeled by systems of flow graphs as in Figure 1.

Let X = {x1, . . . ,xk} denote the set of int-variables and A = {a1, . . . ,am}
the set of pointer variables used by the program. For the moment, we assume all
variables to be global, but we will present methods for local variables in Section
7. In addition, we assume that we are given a set of names C denoting the global
static data-structures of the program. Each of these data-structures is built up
by forming structs and arrays from a set of base types, such as int, float or
mutex. In the presence of dynamic memory allocation, we infer must-equality

2

1main 2 3 4 5
x1

:=
0

a1
:=

c.
(x1)

x1
:=

x1
+

1

f()

Fig. 1. Example flow-graph for a main-function.

relationships between pointer variables while also relying on may-alias pointer
analysis, as further explained in Section 8; until then, we only deal with static
data structures.

As we are only interested in assignments to integer and pointer variables, the
set of statements Stmt at edges of programs in our model consists of:

– Affine assignments of the form xj := t0+
∑k
i=1 tixi (with ti ∈ Z and xi ∈ X).

– Address assignments of the form aj:= adr where adr is an address expression
possibly involving variables from X and A in a way we will specify below.

– Non-deterministic assignments, xj := ? and aj := ?, which are used to ab-
stract assignments that our analysis cannot handle.

With C denoting the set of global variable names, an address expressions adr
is constructed from constants B ∈ C and address variables ai according to the
grammar:

adr ::= B | ai | adr.b | adr.(l)

where b is a field selector and l is an index expression of the form l ≡ t0 + t1x1 +
. . . + t1xk. We assume that address expressions are well-typed. In particular, a
selector b can only be applied to an address expression denoting a pointer to a
struct with component b; likewise, only a pointer to an array can be indexed.

A program comprises a finite set Proc of procedure names. Execution starts
with a call to the distinguished procedure main ∈ Proc. Each procedure q ∈ Proc
is given through a control flow graph Gq = (Nq, Eq, eq, rq) which consists of a
set Nq of program points; a set of edges Eq ⊆ Nq× (Stmt∪Proc)×Nq annotated
with assignments or procedure calls; a special entry point eq ∈ Nq; and a special
return point rq ∈ Nq. We assume here that the program points of different
procedures are disjoint.

Every address pointing somewhere into the global data-structures can be
uniquely represented by an expression B.s1.sr where B is the base address
of a global data-structure and each si is either a field selector or an array index in
Z. Since we consider addresses in fixed global data-structures only, the length r
is bounded by some global constant d. Let A denote the set of all these addresses.
Since we ignore the values stored in the global data-structures, a program state
can be represented by a pair 〈x, a〉 where x ∈ Zk and a ∈ Am describe the values
of the int variables and the address variables, respectively. We denote the set of
all states by S = Zk × Am. Throughout this paper, we use k and m to denote

3

the number of the (global) integer and address variables, and we use d to denote
the maximal depth of data structures!

For an affine combination t = t0 + t1x1 + . . . + tkxk and a state σ = 〈x, a〉,
we write [[t]]σ for the value t0 + t1x1 + . . . + tkxk ∈ Z. Likewise, for an address
expression adr we write [[adr]]σ to denote the address obtained from adr by
substituting the address variables in adr (if there are any) with their values in σ
and by evaluating all affine index expressions w.r.t. the values of the int-variables
in σ. Thus, the semantics of assignments for sets of states S is defined by:

[[xj := t]]S = {〈(x1, . . . , xj−1, [[t]] 〈x, a〉 , xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S} (1)
[[xj :=?]]S = {〈(x1, . . . , xj−1, z, xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S, z ∈ Z} (2)

[[aj := adr]]S = {〈x, (a1, . . . , aj−1, [[adr]] 〈x, a〉 , aj+1, . . . , ak)〉 | 〈x, a〉 ∈ S} (3)

[[aj :=?]]S = {
〈
x, (a1, . . . , aj−1, a

′
j , aj+1 . . . , ak)

〉
| 〈x, a〉 ∈ S, (4)

a′j ∈ A of appropriate type}

Every program execution π can be considered as a transformation [[π]] : 2S → 2S

of the set of states before the execution into the set of states after the execution.
Here, we find it convenient to define the semantics as the transformation R[u] :
2S → 2S that describes which program states can be attained at program point u
when program execution starts in a given set of states. Given the transformation
R[u], we can recover the collecting semantics of u, i.e., the set of all program
states possibly attained during program execution when reaching u, as the set
R[u](S).

In order to define the transformations R, we additionally consider for every
procedure q, the transformation of a set of program states before a call to q into
the set of program states after the call. In order to determine this transformation,
we introduce for every program point u of q, the auxiliary transformation S[u]
which collects the transformation induced by the executions from u to the end
point rq of q at the same level, i.e., all recursive calls on its path towards the
end of the procedure have returned. Then, the transformation of q is given by
S[eq] for the start point eq of q, and we have:

[S1] S[rq] ⊇ Id

[S2] S[u] ⊇ S[v] ◦ [[s]] if (u, s, v) is an assignment edge
[S3] S[u] ⊇ S[v] ◦ S[eq] if (u, q, v) is a call edge

[R0] R[emain] ⊇ Id

[R1] R[eq] ⊇ R[u] if (u, q,) is a call edge
[R2] R[v] ⊇ [[s]] ◦R[u] if (u, s, v) is an assignment edge
[R3] R[v] ⊇ S[eq] ◦R[u] if (u, q, v) is a call edge

Here, the ordering “⊇” on transformers f, g : 2S → 2S is defined by f ⊇ g iff for
every set of states S, f(S) ⊇ g(S).

4

3 Address Equalities

Our goal is to detect equalities between address expressions. In order to do so,
we additionally need to track affine equalities between int variables. An affine
equality is an assertion t0 + t1x1 + . . .+ tkxk =̇ 0 for t0, . . . , tk ∈ Q. An address
equality is an assertion of the form: adr =̇ adr ′ of address expressions adr , adr ′.
Here, “ =̇ ” serves as a formal equality symbol. A program state σ satisfies the
affine equality t =̇ 0 iff the left-hand side evaluates to zero: [[t]]σ = 0. Likewise,
the state σ satisfies the address equality adr =̇ adr ′ iff [[adr]]σ = [[adr ′]]σ. This
means that we consider the Herbrand interpretation for the operator “.” as well
as for base addresses and field selectors, but use an arithmetic interpretation
for index expressions. The latter allows us to identify semantically equal index
expressions, such as x1 + 5 + 2x1 and 5 + 3x1.

The state σ satisfies a finite conjunction E of affine and address equalities iff
σ satisfies every equality in E. In this case, we write σ |= E. Likewise for a set
S of states, we write S |= E iff σ |= E for all σ ∈ S. The conjunction E is valid
at a program point u, if E is satisfied by all states possible at u, i.e., R[u] |= E.

Example 1. In the program from Figure 1, we are interested in the equalities
which hold at program point 4. The set of states possible at this point is given
by R[4] = {〈n, c.(n− 1)〉 | n > 0}, and thus the equality a1 =̇ c.(−1 + x1) is
valid at this program point. ut

Given this notion of satisfiability, we say that a conjunction of equalities E
implies another conjunction of equalities E′, iff for all states σ ∈ S, σ |= E
implies σ |= E′. Thus, the conjunctions of address and affine equalities can be
ordered by implication “⇒”. The greatest element > w.r.t. this ordering is the
empty conjunction or true, as it is satisfied by all states. The bottom element ⊥
in the ordering is false, denoting an unsatisfiable conjunction of equalities.

Consider a finite conjunction E with affine equalities ti0 + ti1x1 + . . . +
tikxk =̇ 0, i = 1, . . . , h. Assume that the conjunction E is satisfiable. Then, we
say that it is in canonical form iff the following conditions are satisfied:

1. the affine equalities — more precisely, the corresponding coefficient matrix
(tij) — is in row echelon form;3

2. the left-hand sides in the address equalities of E are pairwise distinct vari-
ables; and

3. no variable that is on the left-hand side of an address equality in E occurs
in any of the right-hand sides.

By these restrictions, any conjunction in canonical form comprises at most k
affine equalities as well as at most m address equalities.

Example 2. Take the conjunction (a1.d =̇ c.(2x1).d) ∧ (a1.m =̇ c.(x1).m).
An equivalent conjunction in canonical form is (a1 =̇ c.(2x1)) ∧ (x1 =̇ 0). ut
3 A matrix is said to be in row echelon form if all zero rows are at the bottom, the

leading entry of each non-zero row except the first occurs to the right of the leading
entry of the previous row, and the leading entry of any non-zero row is 1.

5

Lemma 1. For every finite conjunction of equalities E, a finite conjunction in
canonical form which is equivalent to E can be constructed in polynomial time.

Proof. Assume that the conjunction is of the form E = Ea ∧ Ex where Ea is a
conjunction of address equalities and Ex is a conjunction of affine equalities. We
proceed in three steps. First, we replace every index expression t occurring in
the conjunction Ea with the expression xt for a fresh variable xt. Let E′a denote
the resulting conjunction of address equalities.

In the second step, we compute a most general unifier σ for E′a w.r.t. the
Herbrand interpretation. If unification succeeds, then due to the specific form
of address expressions, the substitution σ will map each auxiliary variable xt
either to a field selector or to another auxiliary variable xt′ . If there exists an
xt, such that σ(xt) is a field selector, then the conjunctions are inconsistent and
the whole conjunction is equivalent to false.

Otherwise, let E′x denote the conjunction of all equalities t1−t2 =̇ 0 for which
the corresponding auxiliaries xti were unified, i.e., σ(xt1) = σ(xt2). Then Ea is
equivalent to the conjunction of E′x with E′′a =

∧
i(ai =̇ adr i) where the address

expressions adr i are obtained from σ(ai) by substituting back the affine index
expressions t for the auxiliary variables xt.

Thus, a canonical form of the conjunction E is given by E′′a ∧ E′′x , where
E′′x is the echelon form for the conjunction Ex ∧ E′x. Using a linear unification
algorithm [19] for computing σ, we conclude that the canonical form of E can
be computed in time O((|Ex|+ |E′x|) · k2) = O((s+ r · d) · k2) if E consists of s
affine equalities and r address equalities. ut

Note that we give the complexity estimates in this paper under the uniform cost
measure, i.e., we assume a constant cost for arithmetic operations.

Lemma 2. Assume E is a satisfiable conjunction of equalities in canonical form
with k int-variables, and addresses of length at most d. Then the following holds:

1. For every affine combination t, E ⇒ (t =̇ 0) can be decided in time O(k2).
2. For every address expression adr, E ⇒ (ai =̇ adr) can be decided in time
O(d · k2).

Proof. As the first statement is immediate from linear algebra, we only prove
the second. Let us assume that adr ≡ A.s1.sh, i.e., adr does not con-
tain an address variable. Then the implication holds iff E contains an equality
ai =̇ A.s′1.s

′
h, and for each λ = 1, . . . , h, the access expressions sλ and s′λ

are equal under E: either both sλ and s′λ are field selectors and identical, or both
sλ and s′λ are index expressions and E ⇒ (sλ − s′λ =̇ 0).

Now assume that adr ≡ aj.s1.sh for some address variable aj . Unless
adr ≡ ai, the implication can only hold if E also contains an equality for ai.
Moreover, this equality is of the form ai =̇ a.s′1.s

′
h+l for some l ≥ 0 where

a is either an address constant A or an address variable ar. Then the implication
holds iff E also contains an equality aj =̇ a.s′′1.s

′′
l where for λ = 1, . . . , l, the

accesses s′λ and s′′λ are equal under E, and for λ = l+1, . . . , h, the accesses s′λ and

6

sλ−l are equal under E. Assuming that the address equality in E for particular
address variables can be retrieved in constant time, at most d affine equalities
must be checked for subsumption by E — giving us the stated complexity bound.

ut

Thus, both logical implication and equivalence between satisfiable conjunctions
E,E′ in canonical form can be decided in time O((m2 · d+ k) · k2).

Let E denote the set of equivalence classes of finite conjunctions ordered
by implication. The greatest lower bound of (the equivalence classes of) two
conjunctions E,E′ ∈ E is (the equivalence class containing) the conjunction of
all the equalities in E and E′. The partial order E thus is a complete lattice —
given that all descending chains are finite.

Corollary 1. Every chain E0 ⇒ . . .⇒ Ep of pairwise inequivalent conjunctions
Ej using k int variables and m address variables has length p ≤ m+ k + 1.

This follows because any two inequivalent conjunctions Ei and Ej have counter-
parts in canonical form, E′i and E′j , respectively. The implication E′i ⇒ E′j can
only hold, if E′i contains strictly more equalities than E′j . Therefore, all chains
in the lattice will eventually stabilize after at most m+ k + 1 steps.

In summary, we have proven that the set of equivalence classes of conjunctions
of address equalities ordered with implication (E,⇒) is a complete lattice.

4 Weakest pre-conditions

Our approach to computing all valid equalities is based on an effective weak-
est pre-condition computation. For a conjunction of equalities E, the weakest
pre-condition for an assignment and a non-deterministic assignment is given by
substitution and universal quantification, respectively:

[[xi := t]]
T(E) = E[t/xi] [[ai := a]]T(E) = E[a/ai]

[[xi := ?]]T(E) = ∀xi. E [[ai := ?]]T(E) = ∀ai. E

While our domain is closed under substitution, it does not directly support
universal quantification. We are rescued by the fact that in the sub-domain of
linear arithmetic, determining the weakest pre-condition for a non-deterministic
assignment to an int variable xi, it suffices to consider the conjunction of the
weakest pre-conditions of the assignments xi := 0 and xi := 1 [13]. On the
other hand, ∀ai. E for a conjunction E in canonical form involving the address
variable ai is necessarily false, if ai can range over at least two addresses [16].
For simplicity of presentation, let us assume there are no singleton types. Thus,
the weakest pre-conditions for non-deterministic assignments can be simplified:

[[xi := ?]]T(E) = E[0/xi] ∧ E[1/xi]

[[ai := ?]]T(E) =

{
false if ai occurs in E

E otherwise

7

Note that these results do not hold for the general combination of linear arith-
metic with uninterpreted functions.

We now set up a constraint system to characterize the weakest pre-condition
transformers RT[v], which transform conjunctions of equalities at the program
point v into the weakest pre-condition for their validity at program start. The
constraint system uses auxiliary transformers ST[v], which transform the post-
condition of a procedure q into the weakest pre-condition at the program point
v of the same procedure q.

[S1T] ST[rq] ⇒ Id

[S2T] ST[u] ⇒ [[s]]T ◦ ST[v] (u, s, v) an assignment edge
[S3T] ST[u] ⇒ ST[eq] ◦ ST[v] (u, q, v) a call edge

[R0T] RT[emain] ⇒ Id

[R1T] RT[eq] ⇒ RT[u] (u, q,) a call edge
[R2T] RT[v] ⇒ RT[u] ◦ [[s]]T (u, s, v) an assignment edge
[R3T] RT[v] ⇒ RT[u] ◦ ST[eq] (u, q, v) a call edge

Here, the ordering “⇒” on transformers f, g : E→ E is defined by f ⇒ g iff for all
conjunctions of equalities E, f(E)⇒ g(E). The greatest solution to the system
will be the weakest pre-condition transformers. We state this as a theorem.

Theorem 1. For every program point u, set of states S ⊆ S, and conjunction
of equalities E ∈ E,

S[u](S) |= E ⇐⇒ S |= ST[u](E) and R[u](S) |= E ⇐⇒ RT[u](E) = true

Proof. The identity and weakest pre-condition transformers for individual edges
are defined in a standard way. Relating the least fixed point of the system S with
the greatest fixed point of the system ST, we are only required to show that the
following conditions are satisfied:

f(S) ∪ g(S) |= E ⇐⇒ S |= fT(E) ∧ gT(E)

(f ◦ g)(S) |= E ⇐⇒ S |= (gT ◦ fT)(E).

These follow from the properties of weakest pre-condition transformers. The
second equivalence follows from an analogous fixed-point induction and the fact
that S |= E only if true⇒ E. ut

Example 3. In our example program, the weakest predicate transformers for
program points 2, 3 and 4 are given by the constraints:

RT[2]⇒ [0/x1] RT[2]⇒ RT[4]

RT[3]⇒ RT[2] ◦ [c.(x1)/a1] RT[4]⇒ RT[3] ◦ [x1 + 1/x1]

Using methods described below, we find that RT[2] maps the post-condition
a1 =̇ c.(−1 + x1) to the pre-condition a1 =̇ c.(−1). ut

8

Solving such constraint systems requires effective computation of function com-
parisons, greatest lower bounds and compositions. Thus, we need an finite and
effective representation of these predicate transformers.

5 Finite representation

Inspired by order-theory, let us call single address equalities ai =̇ adr and affine
equalities t =̇ 0 atomic. Let EA denote the set of atomic equalities. According
to Lemma 1, every conjunction has a canonical form, which is a conjunction
of atomic equalities. Hence, every transformer f : E → E, which is completely
distributive, i.e., preserves true and distributes over conjunctions, is uniquely
determined by its restriction f |EA

to atomic equalities.
This observation, though, does not provide yet a finite representation of weak-

est pre-condition transformers, since the number of single equalities is still infi-
nite. The second idea, therefore, is not to track weakest pre-conditions for each
equality separately, but to consider generic equalities. Every generic equality
serves as a template which covers a range of equalities of similar form simulta-
neously.

In order to infer weakest pre-conditions for all affine equalities, we consider
the generic post-condition p ≡ p0 +p1x1 + · · ·+pkxk =̇ 0, where p0, . . . ,pk are
fresh variables not occurring in the program. The weakest pre-conditions for p
can be represented as conjunctions of equalities

k∑
i=0

ci0pi +
k∑
i=0

k∑
j=1

cijpixj =̇ 0 (5)

for constants cij ∈ Q.

Example 4. Since our running example has just one int variable, the generic
affine post-condition is is eaff ≡ p0 + p1x1 =̇ 0. The parametric pre-condition
for eaff w.r.t. the assignment x1 := x1 + 1 is then p0 + p1 + p1x1 =̇ 0. ut

A generic address post-condition is of the form ai =̇ a.s1.sr (for some
r ≤ d) where a is either an address constant in C or another address variable in
A, and each sl is either a field name or an indexing pattern pl0 + pl1x1 + · · ·+
plkxk. Weakest pre-conditions for such a generic address post-condition will be
conjunctions of parametric affine equalities and parametric address equalities.
The generic coefficients to be considered in the parametric affine equalities now
are elements from the set Pr = {pli | l ∈ [1, r], i ∈ [0, k]}. Thus, the affine
equalities are of the form:

c000 +
k∑
j=1

c00jxj +
r∑
l=1

k∑
i=0

cli0pli +
r∑
l=1

k∑
i=0

k∑
j=1

clijplixj =̇ 0 (6)

for constants clij ∈ Q. Also, the parametric address equalities will be address
equalities where index expressions are of the same form as left-hand sides in (6).

9

Example 5. For the address variable a1, a generic post-condition is of the form
eadr ≡ a1 =̇ c.(p10 + p11x1). The parametric pre-condition for eadr w.r.t. the
assignment a1 := c.(x1) is given by c.(x1) =̇ c.(p10 + p11x1), whose canonical
form is −x1 + p10 + p11x1 =̇ 0. ut
The conjunction of parametric equalities forms a lattice Ed, which has the same
structure as the lattice E – except that the set of int variables is now extended
with the set of parameters pl0 and products plixj of parameters and int vari-
ables. The height of the complete lattice Ed therefore is bounded by O(d·k2+m).

In our application, generic post-conditions suffice to arrive at a finite specifi-
cation of weakest pre-condition transformers. Let T denote the set of well-typed
generic address equalities. Then the set T is finite and of cardinality O(m2 · t ·d),
where t is the maximal size, i.e., number of fields, of a global data structure’s
type. This set T is complete in the sense that for any concrete atomic equality
e ∈ EA, there exists a substitution σ : Pd → Q and a generic post-condition
e′ ∈ T such that e = e′σ. Any function f : T → Ed can be extended to a com-
pletely distributive function ext (f) : E → E defined by (ext (f))(e) = (f(e′))σ
for all atomic equalities e = e′σ (e′ is a generic equality, σ a substitution).

We now show that the weakest predicate transformers that occur in our
constraint system can indeed be obtained as extensions of functions from T →
Ed. In order to do so, we set up a new constraint system R] over functions
from T → Ed. This is obtained from the constraint system RT by replacing
all operations by their parametric counterparts. Thus, implication “⇒]” and
greatest lower bounds ∧] are now defined according to the domain Ed. Also, the
transfer functions for assignments are lifted to parametric equalities. It remains
to define composition ◦] for functions f], g] : T → Ed.

First, we observe that every parametric equality can be obtained from one of
the generic post-conditions by a transformation σ of the parameters. Therefore
assume that e′ is a generic post-condition and g](e′) = e1∧· · ·∧er where el = e′lσl
for generic post-conditions e′l and linear transformations σl. Then we define

(f] ◦] g])(e′) = (f](e′1))σ1 ∧ · · · ∧ (f](e′r))σr .

If e′ is the generic affine equality, this amounts to computing the canonical form
of a conjunction of O(k4) parametric equalities. If e′ is a generic address equality,
the canonical form must be computed for a conjunction of O(m2) parametric
address equalities and O(d2k4) parametric affine equalities whose normalization
may at worst consume time O(m2 · d4 · k8).

Example 6. Let f = [[x1 := ?]]T and g = [[a1 := c.(x1)]]T. We then compute the
composition (f ◦ g)(eadr) as follows:

(f ◦ g)(eadr) = f(−x1 + p10 + p11x1 =̇ 0)
= (f(eaff))σ for σ = [p10/p0, (−1 + p11)/p1]
= ((p0 =̇ 0) ∧ (p0 + p1 =̇ 0))σ
= ((p0 =̇ 0) ∧ (p1 =̇ 0))σ = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

This computation occurs during the analysis of our running example, because
the while-loop has the same effect as the non-deterministic assignment of f . ut

10

Theorem 2. For any program point u, RT[u] = ext (R][u]).

Proof. We proceed by fixpoint induction. A crucial step is to show that not only
“∧”, but also composition commutes with ext, i.e., that

ext (f) ◦ ext (g) = ext (f ◦] g)

To see that, we calculate:

(ext (f) ◦ ext (g))(e′σ) = ext (f)(ext (g)(e′σ) = ext (f)(g(e′))σ)
= ext (f)((

∧
e′iσi)σ) = ext (f)(

∧
e′i(σiσ))

=
∧

(f(e′i))(σiσ) = (
∧

(f(e′i))σi)σ
= ((f ◦] g)(e′))σ = (ext (f ◦] g))(e′σ)

where g(e′) =
∧
e′iσi as above. ut

Example 7. We can now compute the solution to the constraint system by fix-
point iteration starting from true. The computation stabilizes after three itera-
tions, giving the following pre-conditions for the address post-condition:

RT[2](eadr) = (a1 =̇ c.(p10)) ∧ (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[3](eadr) = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[4](eadr) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

For the affine post-condition eaff , the pre-condition (p0 =̇ 0) ∧ (p1 =̇ 0) is ob-
tained, meaning no non-trivial affine equalities hold at these points. ut

6 Computing all valid equalities

Given the weakest pre-condition transformer RT[v] for program point v, com-
puting all equalities which are valid at v then boils down to solving a suitable
inhomogeneous system of equations. We have:

Theorem 3. The equalities that hold at each program point can be computed in
polynomial time.

Proof. Let e′ denote a generic post-condition and e = e′σ an atomic equality
for some substitution σ of the parameters occurring in e′. By Theorem 1, e
holds at program point u iff RT[u](e) = true, which, by Theorem 2, means that
(R][u](e′))σ = true. The latter means that R][u](e′) does not contain nontrivial
address equalities, but is a conjunction of at most O(d ·k2) affine equalities t =̇ 0
where tσ =̇ 0 is valid for all values x ∈ Zk.

Assume that p′1, . . . ,p
′
r are the parameters occurring in t, the affine combi-

nation t is of the form: t ≡ c00 +
∑k
i=1 (c0i +

∑r
l=1 clip

′
l) xi for suitable cli ∈ Q.

Then tσ =̇ 0 is valid for all values x ∈ Zk iff c00 = 0 and σ is a solution of each
of the equations c0i +

∑r
l=1 clip

′
l =̇ 0 (i = 1, . . . , k). We conclude that finding

all substitutions σ such that e′σ is valid at program point u can be reduced to

11

solving a system of O(k · d · k2) = O(d · k3) inhomogeneous equations over Q
where the number of unknowns is bounded by d · (k + 1). The latter task can
be done with a polynomial number of arithmetic operations. By repeating this
procedure for every possible generic post-condition, we obtain a finite represen-
tation of all equalities which are valid at program point u. ut

Example 8. As we saw in Example 7, at all points in the loop the parametric pre-
condition for eaff has p0 = p1 = 0 as its solution. The parametric pre-condition
for the generic post-condition eadr , on the other hand, is given by:

RT[4](a1 =̇ c.(p10 + p11x1)) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

As no int-variables xi are involved here, this pre-condition is true iff p11 = 1
and p10 = −1. Therefore, the only non-trivial equality which holds at program
point 4 is a1 =̇ c.(−1 + x1). ut

To summarize, the set of all equalities, which hold at a given program point, can
be compactly represented by a polynomially sized set of triples 〈e, σ, V 〉 — each
consisting of a generic post-condition e together with one particular solution for
the conjunction of parametric affine pre-conditions of e and a basis V of the
vector space of solutions of the corresponding homogeneous system. Assuming
that the basis V is in (column) echelon form, we can determine if a given equality
holds at a certain program point in time O(d2 · k2).

7 Local variables

All program variables have so far been considered global. Along the lines of [15],
we now extend the analysis to possibly recursive programs with local variables
as well. From the k integer variables, we consider the first k′ ≤ k variables
x1, . . . ,xk′ as local and the remaining ones as global. Similarly for pointers, the
first m′ ≤ m variables a1, . . . ,am′ denote local variables while the remaining
ones denote global pointer variables.

For passing of parameters, we adopt w.l.o.g. the convention that all locals
of the caller are passed by value into the locals of the callee. This enables us to
reason about equalities involving local variables of the caller.

We extend the concrete semantics with an extra operator H which transforms
the effect of a procedure body into the effect of a procedure call:

H(f)(S) = {〈(x1, . . . , xk′ , x′k′+1, . . . , x
′
k), (a1, . . . , am′ , a′m′+1, . . . , a

′
m)〉 |

〈x, a〉 ∈ S, 〈x′, a′〉 ∈ f({〈x, a〉})}

The constraint system for computing weakest pre-conditions of procedure calls
is modified accordingly by introducing the operator HT:

[S1T] ST[rq] ⇒ Id

[S2T] ST[u] ⇒ [[s]]T ◦ ST[v] (u, s, v) an assignment edge
[S3T] ST[u] ⇒ HT(ST[eq]) ◦ ST[v] (u, q, v) a call edge

12

Here, the operator HT must be defined such that statement 1 of Theorem 1 holds
for the new constraint system. Given the concrete transformer f of a procedure
and the corresponding weakest pre-condition transformer fT, the following con-
dition must hold for all sets of states S and conjunctions of equalities E:

H(f)(S) |= E ⇐⇒ S |= HT(fT)(E)

Consider an arbitrary post-condition E for a procedure call to f . This post-
condition may not only speak about globals, but also about locals of the caller
as well as any local variable further down in the call-stack. All these locals,
however, are inaccessible during the execution of the procedure f and thus can
temporarily be considered as constants. In order to deal with these temporary
constants, we introduce place holders •τ for every possible type of local pointer
variables aj or constant addresses.

Accordingly, we consider the following set of parametric post-conditions E′:

(1) ai =̇ aj.s (2) ai =̇ •τ.s
(3) •τ =̇ ai.s (4) •τ1 =̇ •τ2.s

for global pointer variables ai, aj and type-compatible parametric sequences of
selectors s, where each parametric index is of the form pl0 +pl(k′+1)xk′+1 + · · ·+
plkxk. Furthermore, we consider the parametric affine post-condition:

(5) p0 + pk′+1xk′+1 + · · ·+ pkxk =̇ 0

for global variables xk′+1, . . . ,xk. Assume now that we are given the weakest
pre-conditions fT(E′) of the called procedure for all these post-conditions E′

speaking about global variables (and perhaps •τ).
We now define the weakest pre-condition HT(fT)(E). In each case, we de-

compose E = E′σ for a generic post-condition E′ of one of the types (1) through
(5) and a suitable substitution σ. Then, we define

HT(fT)(E) = (fT(E′))σ .

It only remains to explain the decomposition of E. We first consider a post-
condition E of the form ai =̇ aj.s for global variables ai,aj . Then E′ is of
the parametric post-condition of format (1). For every index expression sl =
t0 + t1x1 + · · ·+ tkxk in s, σ maps pl0 to the affine combination consisting of t0
together with all occurring multiples of locals, i.e., to t0 + t1x1 + · · ·+ tk′xk′ .

If E is of the form ai =̇ X.s where ai is a global variable and X either is
a local of the caller, a constant address or a place holder •τ all of the type τ ,
we choose E′ of the parametric format (2) and σ is constructed as before, but
moreover maps the place holder •τ in E′ to X.

The case where E is of the form X =̇ ai.s is treated analogously. In case
where E is of the form X1 =̇ X2.s and each Xi is a local of the caller, constant
address or place holder, then we choose the appropriate generic post-condition
E′ now of type (4). The substitution σ treats index expressions as before, but
now maps •τ1 to X1 and •τ2 to X2.

13

Finally, if E is an affine equality t0 +t1x1 + · · ·+tkxk =̇ 0, then we choose E′

to be of format (5) where the substitution σ maps p0 to t0 + t1x1 + · · ·+ tk′xk′ ,
and pi to ti for i > k′.

Example 9. Consider the post-condition a1 =̇ a2.(p10 + p11x1 + p12x2), where
a1, a2, and x1 are local, but x2 is global and may be changed during the pro-
cedure call. Assume that the callee only performs the statement x2 := ?. Since
the post-condition is of the type (4), we compute the pre-condition as follows:

[[x2 =̇ ?]]T(•τ1 =̇ •2.(p10 + p12x2)) =
(•τ1 =̇ •2.(p10)) ∧ (•τ1 =̇ •2.(p10 + p21)) = (•τ1 =̇ •2.(p10)) ∧ (p21 =̇ 0)

To obtain the weakest pre-condition of a1 =̇ a2.(p10 +p11x1 +p12x2), we apply
the substitution σ, which maps p10 to p10+p11x1 and replaces the place-holders
with the local address variables: a1 =̇ a2.(p10 + p11x1) ∧ p21 =̇ 0. ut

The second part of our analysis applies the weakest pre-condition transformers
of procedures, as defined through the first part of the constraint system, to
construct a constraint system for the weakest pre-condition transformers for
post-conditions at program points v:

[R0T] RT[emain] ⇒ Id

[R1T] RT[eq] ⇒ RT[u] (u, q,) a call edge
[R2T] RT[v] ⇒ RT[u] ◦ [[s]]T (u, s, v) an assignment edge
[R3T] RT[v] ⇒ RT[u] ◦ HT(ST[eq]) (u, q, v) a call edge

This time, however, the post-conditions for the weakest pre-condition trans-
former RT[v] for a program point of a procedure f need not use •-variables to
refer to variables deeper down in the call-stack. Instead, they may refer to the
locals of f . Accordingly, occurring transformers are described by their weakest
pre-conditions for the generic affine post-condition together with the generic ad-
dress post-conditions ai =̇ aj.s for local or global address variables ai, aj and
suitable selector sequences s.

8 Example Application: Race detection

One common approach to data race analysis is to ensure the following condition
for every pair of accesses in the program: if the two access expressions may alias,
then the acquired lock expressions must alias [17]. We ensure this condition
by inferring access correlations using the must-equality analysis and associating
these correlations with may-alias equivalence classes, as we will illustrate through
the following example.

Example 10. Assume the address variables aacc and alock represent an access
expression and a lock expression that need to be correlated, and our must-alias
analysis provides the following information:

(aacc =̇ a1.data.(x1)) ∧ (alock =̇ a1.mutex.(x1))

14

These equalities imply that the access to the data array of the structure pointed
to by a1 is protected by a corresponding element in the mutex array. ut

The access pattern we can infer in the above example depends on the information
we have about a1. If the analysis can infer that a1 is definitely equal to some
statically allocated structure c, a pattern for access to the elements of c is
obtained. Otherwise, may-alias analysis [7] is called upon to divide the set of
all pointer variables into equivalence classes. The simplest such approach, which
suffices for some applications [11], equates all pointers of the same type. Then our
method allows to infer access patterns for data structures of a given type. A more
refined analysis distinguishes heap objects depending also on their allocation
sites, in which case our analysis derives more refined patterns.

Note that must-equality information complements may-aliasing by ensuring
that aacc and alock are referring to the same object within the equivalence class
of a1. This is crucial in order to verify per-element locking schemes, where each
element in, e.g., a linked list has its own lock. Pratikakis et al. [20] describe a
technique based on existentially typed label-flow to address this issue with the
aid of programmer annotations; must-equality information allows one to infer
per-element correlations automatically.

9 Conclusion

We have presented a must-alias analysis which infers all equalities between ad-
dress expressions and can be proven to be valid w.r.t. the chosen abstraction.
In this abstraction, conditional branching is replaced with non-deterministic
branching and pointers stored in the shared data-structures are not tracked. We
indicated how these equalities can be used to infer correlations between locks
and accesses. Our analysis infers relevant must-equality information also for dy-
namically allocated data which combined with may-alias information allows one
to infer access patterns. A variant of this approach has been implemented in the
Goblint data race analyzer [23] and also extended by an accompanying may-alias
analysis [21].

For simplicity, we have assumed that index expressions are evaluated over the
integral domain Z. Instead, we could have chosen Z2w , i.e., integers modulo a
suitable power of 2, by replacing the linear algebra methods for vector spaces of
affine equalities with the corresponding methods for modules over the principal
ideal ring Z2w [14]. However, if the programs to be analyzed only employ simple
forms of index expressions, it might be sufficient to replace tracking of affine
equalities with tracking of variable equalities alone [15].

References

1. A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdziński, and F. Mang. Interface
compatibility checking for software modules. In CAV’02, LNCS, vol. 2404, pages
654–663. Springer, 2002.

15

2. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In
PLDI’94, pages 230–241. ACM Press, 1994.

3. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In SAS’04, LNCS, vol. 3148, pages 212–227. Springer, 2004.

4. S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear
arithmetic and uninterpreted functions. In ESOP’06, LNCS, vol. 3924, pages 279–
293. Springer, 2006.

5. S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating
low-level software. In CAV’07, LNCS, vol. 4590, pages 379–392. Springer, 2007.

6. S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural
analysis. In ESOP’07, LNCS, vol. 4421, pages 253–267. Springer, 2007.

7. M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias anal-
ysis. ACM Trans. Prog. Lang. Syst., 21(4):848–894, 1999.

8. G. J. Holzmann. The power of ten: Rules for developing safety critical code. IEEE
Computer, 39(6):95–97, 2006.

9. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6(2):133–151, 1976.

10. G. A. Kildall. A unified approach to global program optimization. In POPL’73,
pages 194–206. ACM Press, 1973.

11. S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. MUVI:
automatically inferring multi-variable access correlations and detecting related se-
mantic and concurrency bugs. In SOSP’07, pages 103–116. ACM Press, 2007.

12. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand equalities and
beyond. In VMCAI’05, LNCS, vol. 3385, pages 79–96. Springer, 2005.

13. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In POPL’04, pages 330–341. ACM Press, 2004.

14. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. ACM Trans. Prog.
Lang. Syst., 29(5), 2007.

15. M. Müller-Olm and H. Seidl. Upper adjoints for fast inter-procedural variable
equalities. In ESOP’08, LNCS, vol. 4690, pages 178–192. Springer, 2008.

16. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand equalities. In
ESOP’05, LNCS, vol. 3444, pages 31–45. Springer, 2005.

17. M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In
POPL’07, pages 327–338. ACM Press, 2007.

18. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Prog. Lang. Syst., 1(2):245–257, 1979.

19. M. Paterson and M. N. Wegman. Linear unification. In STOC’76, pages 181–186.
ACM Press, 1976.

20. P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow inference via CFL
reachability. In SAS’06, LNCS, vol. 4134, pages 88–106. Springer, 2006.

21. H. Seidl and V. Vojdani. Region analysis for race detection. In SAS’09, LNCS,
vol. 5673, pages 171–187. Springer, 2009.

22. B. Steffen, J. Knoop, and O. Rüthing. The value flow graph: A program represen-
tation for optimal program transformations. In ESOP’90, LNCS, vol. 1694, pages
232–247. Springer, 1990.

23. V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. Annales Univ.
Sci. Budapest., Sect. Comp., 30:141–155, 2009.

16

