
Class-Modular, Class-Escape and Points-to

Analysis for Object-Oriented Languages

Alexander Herz and Kalmer Apinis

Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{herz,apinis}@in.tum.de

Abstract. We present a combined class-modular points-to and class-
escape analysis that allows to analyze class declarations even if no in-
formation about the code that invokes the class’s methods is available
as is the case for e.g. shared libraries. Any standard whole-program or
summary-based points-to analysis can be plugged into our framework
and thus be transformed into a class-modular, class-escape and points-
to analysis. The analysis framework uses the flow restrictions imposed
by the access modifiers (e.g. private, public and protected in Java) to find
all fields that may be modified by code that is not part of the class dec-
laration. These fields escape the class. Unlike method-based summaries
instantiated with an unknown context, our analysis framework can give
detailed points-to information for non-escaping fields. In addition, the
knowledge of which fields belong to the region that does not escape a
class can be exploited to perform other analysis like class-modular object
in-lining [6] more efficiently or enable the automatic inference of class in-
variants [10]. We prove the soundness of the analysis and present a set of
benchmarks showing that the analysis is suitable to analyze real world
code and that more than 75% of the fields from the benchmarked classes
are identified as non-escaping.

1 Introduction

Accessibility of an object from different program parts is important information
for optimizing compilers and verification tools. This information can be inferred
using may points-to analyses. Often, not all code that uses a class declaration
is available to analysis because program modules are compiled independently
and linked dynamically at run time. In order to apply optimizations or veri-
fication in this scenario, points-to information for a class must be inferred in
isolation from the code that uses the class. Such class-modular points-to infor-
mation cannot be obtained from existing whole-program points-to analyses as
these expect the complete program as input. In contrast to whole-program analy-
ses, modular analyses can abstract different program parts independently. Com-
monly, individual methods are abstracted without calling-context. Later, these
method-summaries are instantiated with calling-context information, so that
eventually the context information and the summaries of the whole program are

A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 106–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Class-Modular, Class-Escape and Points-to Analysis 107

combined. Instantiating method-summaries with unknown context information
(e.g. for class methods without the code that calls the method) yields imprecise
results for the this-pointer and all other method parameters. Therefore, it is not
enough to use method-summary based analyses.

To solve this problem, we present a framework that transforms a common
whole-program or summary-based points-to analysis into a class-modular points-
to analysis. Given a sound plug-in analysis, the transformed analysis is sound
and may be useful even if the whole program is available. The analysis time can
be reduced by analyzing class declarations independently or in parallel, mostly
without loosing much precision.

As a side-effect, the transformed analysis produces class-escape information.
Escape analysis as presented by e.g. Blanchet [2] determines which local objects
escape from a method as only local objects that do not escape can be considered
truly local to that method and may be stack allocated. In contrast, our frame-
work extends the scope from methods to classes. Local variables, private fields
and locally used heap objects are considered class-local if and only if they can
never become accessible from outside the class. If a local variable, a private field
or a locally used heap object can possibly become accessible from outside the
class (e.g. a pointer to it escapes through one of the public class methods) then
it is considered class-escaped. This class-escape information can be used to im-
prove other analysis (e.g. object in-lining), which depend on object accessibility
information but commonly rely on a whole-program or summary-based analysis.

We have implemented an instance of the analysis in the Goblint [20] framework
showing that it can handle large classes from industrial and open source C++
code in seconds. Our contributions in this paper are

– we present the combined class-modular, class-escape and points-to analysis
based on encapsulation that is fully independent from the code that uses the
analyzed class,

– we present a framework that allows to transform common points-to analyses
into a class-modular, class-escape and points-to analysis,

– we prove the soundness of the transformed analysis,
– we present an implementation and a set of benchmarks applying an instance

of the analysis to large, real world code in seconds.

Related Work. Many of the points-to analyses are based on work from Steens-
gaard [17] and Andersen [1] which are neither class-modular nor deal with class-
escape information. Abstract interpretation based modular analyses in general
is described by Cousot and Cousot [5], where program modules can be analyzed
independently but a completely unknown (worst case) context is assumed and
access modifiers are not taken into account.

Rountev [13], Cheng and Hwu [4], Horwitz and Shapiro [8] present pointer
analyses that are modular on the function level but require additional informa-
tion from the function’s calling context. Whaley and Rinard [21] present a com-
positional pointer and (method-)escape analysis. They need information from
the analyzed methods’ calling context as their analysis is not on the class-level.

108 A. Herz and K. Apinis

The precision of non-escaped objects cannot be as good if the class methods are
analyzed separately, neglecting the object state information available through
the access modifiers. Rountev and Ryder [14] present a similar approach, assum-
ing worst case information on the function level.

The partitioning of fields into escaping and non-escaping fields performed by
our analysis relates our analysis to region analysis where mutually unreachable
heap regions are identified. The non-escaping field set represents a heap region
that is unreachable from outside the class declaration and the resulting points-
to information directly represents which of these fields can reach outside the
region. Region analysis for C programs was recently investigated by Seidl and
Vojdani [16]. These region analyses are not class-modular and often the pointer
information is undirected and less precise.

Boyapati, Liskov, and Shrira [3] have applied ownership type-systems to ver-
ify encapsulation and alias protection properties of object-oriented programs.
These type-systems heavily rely on annotations and restrict the programming
language they can be applied to, as e.g. iterators are not easily incorporated.
The ownership property verified in these systems is more restrictive than our
class-escape property.

To the best of our knowledge, this is the first presentation of a class-modular,
points-to and class-escape analysis. Class-level modular static analysis of classes
and class methods that automatically infer class invariants have been proposed
by Logozzo[10]. For the analysis to be sound it is required that accessibil-
ity of object internal state (to code that is outside the analyzed class) is de-
tected by another static analysis. The suggested whole-program escape analysis
from Blanchet[2] uses the different notion of method-escaping rather than class-
escaping and cannot be applied when only the class declaration is given. As such,
it does not provide the accessibility information required for Logozzo’s analysis.
Instead, the class-escape information provided by our analysis can be used.

Porat et al. [12] present a mutability analysis for Java that can handle missing
class definitions and utilizes access modifiers. They give no details on their state
accessibility analysis. It is not clear whether their state accessibility analysis is
sound nor how it works.

Based on our analysis class-modular object in-lining[6] optimizations for
garbage collected languages can be implemented. The life-time of fields which
do not escape a class is limited to the life-time of the enclosing object. Since
non-escaping fields are guaranteed to be non-accessible from outside a class it is
sufficient to modify the code of the class itself to in-line an object, so method
cloning is not required and the optimization is modular. JIT compilers could
benefit from similar improvements [22].

Structure. First, we present a working example in Section 2. After describing
the abstract semantics of our analysis in Section 3, we present our implemen-
tation of the analysis and benchmarks in Section 4. In Section 5 we summarize
our findings. In the corresponding technical report [7] we define the language
our analysis operates on and proof the soundness of the analysis.

Class-Modular, Class-Escape and Points-to Analysis 109

2 Example

In this Section a C++ example is shown where pointer assignments in one
method of a class have a non-local effect which is visible in another method
and how the analysis handles this information.

The private fields of a class can become accessible from external code if a
pointer to such a field escapes the class, for example as a return value as shown
in line 27 in the example in Fig.1.

In the constructor of Rect, an instance of Point which we denote as Ptb for
convenience, is assigned to lr. Then the address of lr is assigned to e and e’s
address is assigned to p in turn. This is denoted as edges leading from p to e to
lr and finally to Ptb in Fig.2, where an edge from node a to node b denotes that
b is in the points-to set of a.

Within DoEscape from line 22 to line 26 Ptb is escaped through various routes
as noted in the comments of Fig.1. Especially interesting is line 23, here the
pointer pr may be equal to the current instance this or another instance of the
class. So Ptb may be assigned to a field from this if pr equals this. Otherwise, Ptb
escapes because it is assigned to an external variable. In line 27 e is returned,
so the content of e and everything reachable thereof may escape. Generally, an
object escapes when its address may be stored in an externally accessible object.

Analysis Overview. In order to collect all escaped pointers in the points-to set
of the variable a ext, our analysis proceeds in three steps. First an instance a this
of the class is created and all public fields of the class are considered escaped. The
created instance serves as representative object for this class. Then the effect of
calling any constructor is over-approximated on the representative object a this.
Finally, all possible combinations of public method calls on a this are simulated.

When applied to our example class Rect, the first step produces points-to
information telling us that a ext may point to itself, a this, or pub — these are
considered class-escaped. In the next step we need to apply the effect of any
constructor to our abstract state. As our example only has one constructor, only
the effect of that constructor is applied. Finally, we simulate all possible public
method calls on Rect. Class Rect only has one (public) method DoEscape, but
this method could be applied several times on the same object (while changing
the escaped objects between each call). Therefore, the effect of a ext = a this →
DoEscape(a ext, a ext) is computed until the smallest fix-point for a ext and the
fields of a this is reached. In the first iteration, Ptb class-escapes on line 22, 23
and 25, because a pointer to Ptb is assigned to a potentially externally accessible
variable. In line 24, Ptb class-escapes because it is given as an argument to an
unknown function. Eventually, lr and Ptb class-escape in line 27, because they
are returned. In the second iteration, Ptb also escapes in line 26 because it is
assigned to lr, which has escaped in the previous iteration. This last step reaches
the fix-point and the result is shown in Fig. 2. At the end of each iteration step,
all escaped pointers are modified so that any escaped object may point to any
other escaped object.

110 A. Herz and K. Apinis

1 class Point{ public: int x,y; };
2 extern void unknown(Rect* pr);
3 class Rect
4 {
5 private: Point *ul,*lr;
6 Point **e,**l;
7 Point ***p;
8 Point *priv;
9 public: Point *pub;//escapes

10
11 Rect(int x1,int y1, int x2, int y2)
12 {
13 ul=new Point();//Pt_a
14 lr=new Point();//Pt_b
15 p=&e;e=&lr;l=&ul;
16 ul->x=x1;ul->y=y1;
17 lr->x=x2;lr->y=y2;
18 }
19
20 Point** DoEscape(Point**v,Rect* pr)
21 { //pt_b escapes in the following:
22 pub=lr;//copied into public var
23 pr->priv=lr;//maybe copied into

other instance
24 unknown(lr);//passed to unknown fun
25 *v=*e;//copied into external var
26 **p=lr;//copied into lr, becomes

external in next line
27 return e; //lr, Pt_b escape (

returned from public fun)
28 }
29 };

Fig. 1. C++ Example Code. Sound
points-to information for class Rect in
the absence of the code that uses class
Rect is generated. The field e is assigned
the address of lr in line 15, so when the
content of e is escaped in line 27 then
lr and the instance of Point which lr
is pointing to are escaped. An object
escapes when its address is stored in
an externally accessible object. The
points-to information of fields from Rect
is a global property, points-to relations
set up in one method are retained when
another method is called.

ext

externally accessible objects

Rect

this

Ptb lr

epriv

p

pub

l

ul Pta

Fig. 2. Graph based representation of
the final domain state for class Rect
for the program on the left after the
analysis has finished, dashed nodes
represent escaped objects. Dotted nodes
are externally accessible before any
method from Rect is called. An edge
from symbol a to symbol b means that
b is in the points-to set of a. All nodes
reachable from ext are also connected
with each other, this is not shown for
clarity. All addresses except this that
are neither declared nor allocated inside
Rect are abstracted to ext. this is an
external instance of Rect for which the
class-invariant is generated.

Class-Modular, Class-Escape and Points-to Analysis 111

3 Abstract Semantics

Our framework transforms a given plug-in points-to analysis from whole-program
or summary-based analysis to a class-modular class-escape analysis that can
analyze a given class without any context information on how the class may
be used. To achieve this, the domain of the plug-in analysis is extended by our
own global domain G′. The semantics of our analysis is defined by lifting the
plug-in semantics to be able to handle the extended domain and the unknown
context in which the class may be used in. A special address ext that abstracts
all addresses which may exist outside the analyzed class definition is introduced.
Furthermore, an address this is created that together with our global domain
abstracts all possible instances of the analyzed class.

The concrete language our analysis operates on and its semantics is given
in the corresponding technical report [7]. Any points-to analyses which adhere
to the set of requirements given in this section can be used as plug-in anal-
ysis for our framework. Eventually, our analysis inherits the properties from
the plug-in analysis while making the analysis class-modular and calculating
sets of maybe class-escaping objects which are collected in the points-to set
of ext.

This section is structured as follows. First, we list the requirements for the
plug-in points-to analysis to be suitable for this framework. Afterwards, we define
the necessary functions to lift the plug-in semantics �s�

�
to the abstract semantics

�s�
�′

of our analysis. Finally, we give a set of initialization steps and a set of
constraints that must be solved in order to perform the analysis.

Let val� be the abstract values and addr� ⊆ val� the abstract addresses used
by the plug-in analysis.

Let A : D → lval → P(addr�) be a plug-in provided function that calculates
the set of possible abstract addresses of a l-value given an abstract domain
state ρ�.

Let �s�
�
: D → D be the abstract semantics of the plug-in points-to analysis

for the statement s. The complete lattice D is the abstract domain used by
the points-to analysis. From that we construct D′ = D × G′ — the domain of
our analysis, where G′ : addr� → P(val�) extends the global (flow-insensitive)
domain of the plug-in analysis.

Furthermore, let q : D → addr� → P(val�) be a plug-in provided function
that calculates the set of possible abstract values that may be contained by
the memory at the given address when provided an abstract domain state and
∀ρ� ∈ D : qρ� null = ∅.

Intuitively, the plug-in analysis maintains some kind of mapping from abstract
addresses to sets of abstract values for each program point abstracting the stack
and the heap. How exactly this information is encoded inside the plug-in domain
D is not relevant for our analysis. All addresses are initialized to null, so if an
address a has not yet been written to in ρ� then qρ� a = {null}.

112 A. Herz and K. Apinis

Finally, ρ�1 = ρ�0[x → Y] denotes the weak update of ρ�0 ∈ D such that:

∀z ∈ addr� : qρ�
1
z �

{
qρ�

0
z ∪ Y : z = x

qρ�
0
z : else

Using this notation we can perform weak updates on the plug-in domain without
knowing the details of D.

For example the summary-based points-to and escape analysis from Whaley
and Rinard [21], like virtually all other sound points-to analyses, fulfills all our
requirements and can be plugged into our framework and thus become a class-
modular, points-to and class-escape analysis.

To shorten the notation we also define a function Q : D → P(addr�) →
P(val�) for sets of addresses.

Qρ� S �
⋃
x∈S

qρ� x

The function Q∗
ρ� : D → P(addr�) → P(val�) defines the abstract reachability

using Qρ� :

Q∗
ρ� S � F ∪Q∗

ρ�(F)

where F = Qρ� S ∪
⋃
c∈Q

ρ�
S

fi∈public fields of c

Aρ�(c → fi)

The analysis is performed on a given class which we will call Class. Before
starting the analysis an instance of Class is allocated and stored in the global
variable a this which we assume is not used in the analyzed code. Also, a global
variable called a ext of the most general pointer type (e.g. Object for Java or
void* for C++) is created using the plug-in semantics (a ext is also assumed not
to be used in the analyzed code):

ρ�0 = (�a this := new Class�
� ◦ �a ext := null�

�
) d�0

where d�0 is the initial state of the plug-in domain, before any code has been
analyzed. At this stage of the analysis new does not execute any constructors.
As both a this and a ext are not used within the analyzed code, they do not
change the semantics of the analyzed code and our lifted semantics can use these
variables to communicate with the plug-in analysis and store special information
as explained in the following.

The set this which contains all possible addresses of the allocated Class is
defined as:

this = Qρ�
0
(Aρ�

0
(a this)) .

The value this is meant to abstract all instances of Class that can exist (for the
plug-in, this is an instance of Class that cannot be accessed from the program

Class-Modular, Class-Escape and Points-to Analysis 113

unless our analysis provides its address). The plug-in analysis should be field
sensitive at least for the Class instance addressed by this in order to exceed the
precision of other points-to analyses when an unknown context is used.

The set fields contains all addresses of the public fields from the Class instance
a this:

fields =
⋃
fi∈public fields of Class

Aρ�
0
(a this → fi) .

Since the analysis is class-modular, only class declarations are analyzed. Hence,
most of the program code is hidden from the analysis. We differentiate program
segments which are visible to the analysis and the rest by defining external code:

Definition 1 (External Code)
External code with respect to a class C denotes all code that is not part of the class
declaration of C. If no class C is stated explicitly, then class Class is assumed.

The points-to set of ext abstracts all addresses accessible from external code.

ext = Aρ�
0
(a ext)

Initially, only ext itself, this and the public fields from this are reachable from
external code, so ext must point to itself, this and the public fields, as an instance
of Class may be allocated in code external to Class.

ρ�1 = ρ�0[a → ext ∪ this ∪ fields | a ∈ ext] (1)

As the points-to set of ext contains multiple distinct objects, only weak updates
can be performed on ext by the plug-in analysis.

Fields from a this and their content become member of Qρ� ext during the
analysis if they may escape the Class. So after the analysis has finished, all
possibly escaped memory locations are contained in Qρ� ext, all other memory
locations do not escape the Class and are inaccessible from external code.

In the following we describe how the plug-in semantics �s�
�
is lifted to produce

the abstract semantics �s�
�′
of our class-modular class-escape analysis:

The global addresses are constituted by ext and the fields of this since modifi-
cations of these addresses’ values are observable inside different member methods
of this, even if these methods do not call each other. For example, a method from
Class may return an address to external code which was not previously accessible
by external code. Later, external code may invoke a method from Class passing
the newly accessible address (or something reachable thereof) as parameter to
the method.

global : P(val�)

global � ext ∪ fields

Given the state of the plug-in domain, globals : G′ → D → G′ calculates the new
state of the global domain G′:

globals g� ρ� x �
{
qρ� x ∪ g� x : x ∈ global

∅ : else

114 A. Herz and K. Apinis

The global domain state tracks modifications to fields of a this between different
invocations of Class-methods from external code.

modify over-approximates the effects of code external to Class. In a single-
threaded setting, these effects cannot occur inside code of Class so modify is
applied when leaving code from Class. This happens either when returning from
a public method to external code or when calling an unknown method. We
assume that all methods from Class are executed sequentially. If other threads
(that do not call methods from Class) exist, then modify must be applied after
every atomic step a statement is composed of, as the other threads my perform
modifications on escaped objects at any time. If no additional threads exit, then
modifications of escaped objects can happen only before a method from Class
is entered, when an external function is called and after a method from Class is
exited. As external code may modify all values from addresses it can access to
all values it can access, modify ensures all possible modifications are performed.

modify : D → D

modify ρ� � ρ�[x → Q∗
ρ� ext | x ∈ Q∗

ρ� ext]

The following semantic equation is inserted into the semantics �s�
�
: D → D of

the plug-in analysis (or it replaces the existing version).

�l := e0 → mextern(e1, . . . , en)�
�

ρ� � (�l := a ext�
� ◦modify ◦

�deref(a ext) := e0�
� ◦ ... ◦ �deref(a ext) := en�

�
) ρ�

Methods mextern are called from within Class but are not analyzed (e.g. because
the code is not available). This makes the analysis modular with respect to
missing methods in addition to its class-modularity. The procedure unknown,
which is called in line 24 from our example in Fig. 1, represents such an external
method where the above rule applies.

As shown in the proof [7], reading from a ext and writing to deref(a ext)
correctly over-approximates reads from non-class-local r-values and writes to
non-class-local l-values.

Finally, we give the abstract semantics �s��
′
: D×G′ → D×G′ of our analysis

for a statement s.

�e0 → m(e1, . . . , en)�
�′

(ρ�,g�) � (ρ�2, globals g� ρ�2)

where ρ�2 = modify(�deref(a ext) := e0 → m(e1, . . . , en)�
�

ρ�
1

)

and ρ�1 = ρ�[x → g� x | x ∈ global]

Our transfer function is invoked only for top-level methods when solving the
constraint systems for the analysis (see Eq. 3,4). First, the current state of the
flow-insensitive fields and ext is joined into the plug-in domain. Then the plug-
in semantics (which now contains our patched rule for mextern) is applied and

Class-Modular, Class-Escape and Points-to Analysis 115

stores the return value of the method in a ext. Afterwards, modify is applied to
over-approximate the effects of external code that may execute after the top-
level method is finished. Finally, the new global domain state is calculated using
globals.

Before starting the actual analysis, the effects of external code that might
have executed before a constructor from Class is called are simulated by applying
modify:

(ρ�i , g
�
i) = modify(ρ�1, globals g�0 ρ�1) (2)

Here, g�0 is the bottom state of the global domain.
Then, the constructors are analyzed. Since we know that only one constructor

is executed when a new object is created, it is sufficient to calculate the least
upper bound of the effects of all available constructors:

(ρ�c, g
�
c) =

⊔
m∈public constructor of Class

�a this → m(a ext, ..., a ext)�
�′
(ρ�i , g

�
i) (3)

Afterwards, the public methods from Class with all possible arguments and in
all possible orders of execution are analyzed by calculating the solution [15] of
the following constraint system,

(ρ�f , g
�
f) � (ρ�c, g

�
c) (4)

∀m ∈ public method of Class :

(ρ�f , g
�
f) � �a this → m(a ext, ..., a ext)�

�′
(ρ�f , g

�
f)

in order to collect all local and non-local effects on the Class until the global
solution is reached. a ext is passed for all parameters of the method as it con-
tains all values that might be passed into the method. For non pointer-type
arguments the plug-in’s top value
type for the respective argument type must
be passed as argument to the top-level methods. If the target language supports
function-pointers then all private methods for which function-pointers exist must
be analyzed like public methods, if the corresponding function-pointer may es-
cape the class.

When inheritance and protected fields are of interest, the complete class hi-
erarchy must be analyzed. If the language allows to break encapsulation then
additional measures must be taken to detect this. For example, C++ allows
friends and reinterpret cast to bypass access modifiers [18]. Friend declarations
are part of the class declaration and as such easily detected. Usage of reinter-
pret casts on the analyzed Class can be performed outside the class declaration,
so additional code must be checked. Still, finding such casts is cheaper than doing
a whole-program pointer analysis. In other languages, e.g. Java, such operations
are not allowed and no additional verification is required.

116 A. Herz and K. Apinis

4 Experimental Results

In this Section we present an implementation of the analysis and give a set of
benchmark results that show how the analysis performs when it is applied to
large sets of C++ code. As plug-in analysis a custom points-to analysis was
implemented using the Goblint[20] framework.

The C++ code is transformed to semantically equivalent C using the LLVM
[9] as the Goblint front-end is limited to C. Inheritance and access modifier
information is also extracted and passed into the analysis. During this trans-
formation, we verify that the access modifiers are not circumvented by casts
or friends. No circumvention of access modifiers was found for the benchmarked
code. Better analysis times can be expected from an analyzer that works directly
with OO code as the LLVM introduces many temporary variables that have to
be analyzed as well.

As additional input to the analysis a list of commonly used methods from the
STL that were verified by hand was provided. Without this information more
fields are flagged as escaping incorrectly by our implementation, because they
are passed to an STL method which is considered external. This additional input
is not required when using a different plug-in analysis that does not treat the
STL methods as external.

The analysis is performed on two code-sets — the Industrial code is a collec-
tion of finite state machines that handle communication protocols in an embed-
ded real-time setting whereas Ogre[11] is an open source 3d-engine. The results
are given in Table 1.

Table 1. Benchmark results

Code Classes C++[loc] C[loc] Time[s] Ext[%] σ

Industrial 44 28566 1368112 282 23 24
Ogre 134 71886 1998910 42 62 36

The C++ and C columns describe the size of the original code and its C
code equivalent, respectively. More complex C++ code lines generate more C
lines of code, so the ratio of code size is a measure for the complexity of the
code that needs to be analyzed. The table shows that the industrial code is on
average more complex than the Ogre code, requiring more time to analyze per
line of code.

The time column represents the total time to analyze all the classes. The
last two columns in the table show the mean and the standard deviation of
the percentage of fields that the analysis identified as escaping. Fields that are
identified as escaping limit the precision of subsequent analysis passes since they
can be modified by external code. For the rest of the fields detailed information
can be generated. A field fi is escaping if and only ifAρ�

f
(a this→fi)∩Qρ�

f
ext �= ∅.

Class-Modular, Class-Escape and Points-to Analysis 117

Only 23% of the fields are escaping for the industrial code. This is the case
because most of the code processes the fields directly rather than passing the
fields to methods outside the analyzed class, yielding good precision.

Inside the Ogre code most fields are classes themselves, so many operations
on fields are not performed by code belonging to the class containing the field
but by the class that corresponds to the field’s type. Our plug-in analysis imple-
mentation handles the methods of these fields as unknown methods and assumes
that the field escapes. By using a plug-in analysis that analyses into these meth-
ods from other classes (e.g. Whaley and Rinard [21]) the precision of the analysis
for the Ogre code can be improved to about 25% escaping fields, as indicated by
preliminary results. Our analysis provides an initial context to analyze deeper
into code outside of the class declaration. Especially for libraries it is necessary
to generate an initial context if the library is analyzed in isolation.

So for the presented examples, for more than 75% of the fields detailed infor-
mation can be extracted without analyzing the code that instantiates and uses
the initial class. The benchmark times are obtained by analyzing all classes
sequentially on a 2.8 Ghz Intel Core I7 with 8GB RAM. Since the results for
each class are independent from the results for all other classes, all classes could
be analyzed in parallel.

5 Conclusion

We have presented a sound class-modular, class-escape and points-to analysis
based on the encapsulation mechanisms available in OO-languages. The analysis
can be applied to a set of classes independently without analyzing the code
that uses the class thus reducing the amount of code that needs to be analyzed
compared to whole-program and summary-based analysis.

In addition, we have presented an easy to apply, yet powerful transformation
of non-class-modular points-to analyses into class-modular, points-to and class-
escape analyses. Since our framework has very weak requirements on potential
plug-in points-to analyses, it can be applied to virtually all existing points-to
analyses. We have shown, that the transformation will produce a sound analysis,
given that the whole-program plug-in analysis was sound. Moreover, the resulting
class-modular, class-escape and points-to analysis will inherit the properties of
the plug-in and therefore benefits from previous and future work on points-to
analyses.

The presented benchmarks show that the analysis can be applied to large, real
world code yielding good precision. Due to the modularity of the analysis, flow
sensitive pointer analysis becomes viable for compiler optimization passes. Class
files can be analyzed and optimized independently before they are linked to form
a complete program. Hence, various compiler optimizations and static verifiers
can benefit from a fast class-modular class-escape and pointer analysis. Espe-
cially in large OO software projects that enforce common coding standards[19]
the usage of non-private fields is rare, so good results can be expected.

118 A. Herz and K. Apinis

Acknowledgements. We would like to thank Prof. Helmut Seidl for his valu-
able input and support. In addition, we would like to thank Axel Simon for
contributing his time and expertise on pointer analyses. Finally, we would like
to thank Nokia Siemens Networks for providing their source code and additional
funding.

References

1. Andersen, L.: Program analysis and specialization for the C programming language.
Tech. rep., 94-19, University of Copenhagen (1994)

2. Blanchet, B.: Escape analysis for object-oriented languages: application to Java.
SIGPLAN Not. 34, 20–34 (1999)

3. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation.
SIGPLAN Not. 38, 213–223 (2003)

4. Cheng, B.C., Hwu, W.M.W.: Modular interprocedural pointer analysis using access
paths: design, implementation, and evaluation. In: Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementation,
PLDI 2000, pp. 57–69. ACM, New York (2000)

5. Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002)

6. Dolby, J., Chien, A.: An automatic object inlining optimization and its evaluation.
SIGPLAN Not 35(5), 345–357 (2000), aCM ID: 349344

7. Herz, A., Apinis, K.: Class-Modular, Class-Escape and Points-to Analysis (Proof).
Tech. rep., TUM-I1202, Technische Universität München (2012)

8. Horwitz, S., Shapiro, M.: Modular Pointer Analysis. Tech. rep., 98-1378, University
of Wisconsin–Madison (1998)

9. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis
transformation. In: International Symposium on Code Generation and Optimiza-
tion, CGO 2004, pp. 75–86 (2004)

10. Logozzo, F.: Automatic Inference of Class Invariants. In: Steffen, B., Levi, G. (eds.)
VMCAI 2004. LNCS, vol. 2937, pp. 211–222. Springer, Heidelberg (2004)

11. Open Source 3D Graphics Engine OGRE, http://www.ogre3d.org/
12. Porat, S., Biberstein, M., Koved, L., Mendelson, B.: Automatic detection of im-

mutable fields in Java. In: Proceedings of the 2000 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON 2000, p. 10. IBM Press
(2000)

13. Rountev, A.: Component-Level Dataflow Analysis. In: Heineman, G.T., Crnković,
I., Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 82–89. Springer, Heidelberg (2005)

14. Rountev, A., Ryder, B.G.: Points-to and Side-Effect Analyses for Programs Built
with Precompiled Libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
20–36. Springer, Heidelberg (2001)

15. Seidl, H., Vene, V., Müller-Olm, M.: Global invariants for analyzing multithreaded
applications. Proc. of the Estonian Academy of Sciences: Phys., Math. 52(4), 413–
436 (2003)

16. Seidl, H., Vojdani, V.: Region Analysis for Race Detection. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 171–187. Springer, Heidelberg (2009)

17. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pp. 32–41. ACM, New York (1996)

http://www.ogre3d.org/

Class-Modular, Class-Escape and Points-to Analysis 119

18. Stroustrup, B.: The C++ programming language, vol. 3. Addison-Wesley, Reading
(1997)

19. Sutter, H., Alexandrescu, A.: C++ coding standards: 101 rules, guidelines, and
best practices. Addison-Wesley Professional (2005)

20. Vojdani, V., Vene, V.: Goblint: Path-sensitive data race analysis. Annales Univ.
Sci. Budapest., Sect. Comp. 30, 141–155 (2009)

21. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 1999, pp. 187–206.
ACM, New York (1999)

22. Wimmer, C., Mössenböck, H.: Automatic feedback-directed object inlining in the
java hotspot(tm) virtual machine. In: Proceedings of the 3rd International Confer-
ence on Virtual Execution Environments, VEE 2007, pp. 12–21. ACM, New York
(2007)

	Class-Modular, Class-Escape and Points-to Analysis for Object-Oriented Languages
	Introduction
	Example
	Abstract Semantics
	Experimental Results
	Conclusion

